Synge type theorems for positively curved Finsler manifolds
نویسندگان
چکیده
منابع مشابه
Existence of closed geodesics on positively curved Finsler manifolds
For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties. 2000 MSC classification: 53C22; 53C60; 58E10
متن کاملClosed geodesics on positively curved Finsler spheres
In this paper, we prove that for every Finsler n-sphere (S, F ) for n ≥ 3 with reversibility λ and flag curvature K satisfying ( λ λ+1 )2 < K ≤ 1, either there exist infinitely many prime closed geodesics or there exists one elliptic closed geodesic whose linearized Poincaré map has at least one eigenvalue which is of the form exp(πiμ) with an irrational μ. Furthermore, there always exist three...
متن کاملSome Rigidity Theorems for Finsler Manifolds
This is a survey article on global rigidity theorems for complete Finsler manifolds without boundary.
متن کاملPositively Curved Combinatorial 3-Manifolds
We present two theorems in the “discrete differential geometry” of positively curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem: • A combinatorial 3-manifold whose edges have degree at most five has edgediameter at most five. When all edges have unit length, this degree bound is equivalent to an angle-deficit along each edge. It is for this reason we call such space...
متن کاملExistence of closed geodesics on positively curved Finsler manifolds Hans - Bert Rademacher
For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2007
ISSN: 2156-2261
DOI: 10.1215/kjm/1250692291